M1 For which of the following graphs of f does

$f(\mathrm{x})=f(-\mathrm{x})$ for all values of x shown?

For all positive values of x, the function f is defined by $f(x)=x^{3}-x^{-2}$. Of the following, which is the best approximation of $f(x)$ for values of x greater than 1,000?
(A) x^{3}
(C) X^{5}
(B) x^{4}
(D) x^{6}

T1 The terminal side of an angle θ, in standard position passes through the point $(7,-24)$. What is $\csc \theta$?
a. $-\frac{24}{25}$
b. $-\frac{25}{24}$
c. $\frac{24}{25}$
d. $-\frac{25}{7}$
e. $-\frac{24}{7}$

T2 In the expression $\frac{u}{\sqrt{u^{2}-1}}$, let $u=\csc x$. Which of these is equivalent to the resulting expression?
a. $\sec x(\sec x+\tan x)$
b. $\csc x$
c. $\sec x$
d. $\csc x(\csc x+\cot x)$
e. $\frac{\cos x(\sin x-1)}{\sin x}$

T3 Form the difference quotient for $f(x)=\frac{1}{5 x+7}$ and evaluate it at $x=-3$
a. $\frac{-1}{8}$
b. $\frac{-5 h}{64-40 h}$
c. $\frac{-5}{40 h-64}$
d. $\frac{5}{40 h-64}$
e. $\frac{-5 h}{40 h-64}$

W1 Solve for $\mathrm{x}: 36^{x}-6^{x+1}=16$
W2 If $\log _{x} 81=4$, find $\log _{3} \sqrt{x}$.
a. $\log _{6} 2$
A. $\frac{1}{3}$
c. $2 \log _{6} 3$
B. 1
d. $\log _{2} 6$
C. 3
e. $\log _{6} 16$
D. $\frac{1}{2}$
E. 9

W3 If $\log _{b} 3=P$ and $\log _{b} 4=Q$, find $\log _{b} 18$.
A. $\frac{P^{2} Q}{2}$
B. $2 P+\frac{Q}{2}$
C. $\frac{P}{2}+2 Q$
D. $P+Q^{2}$
E. $P^{2}+\sqrt{Q}$

W4
The figure below shows the graph of a cosine function for one period. Which of the following is an equation for the graph?

a. $y=2 \cos \left(\pi\left(x-\frac{1}{2}\right)\right)$
b. $y=2 \cos \left(\frac{\pi}{2}(x+1)\right)$
c. $y=2 \cos (2 x+1)$
d. $y=2 \cos (\pi(x+1))$
e. $y=\cos \left(2\left(x+\frac{\pi}{2}\right)\right)$

